Multilevel preconditioners for a quadrature Galerkin solution of a biharmonic problem
نویسنده
چکیده
Efficient numerical algorithms are developed and analyzed that implementmultilevel preconditioners for the solution of the quadrature finite element Galerkin approximation of the biharmonic Dirichlet problem. The quadrature scheme is formulated using the Bogner-Fox-Schmit rectangular element and the product two-point Gaussian quadrature. The proposed additive and multiplicative preconditioners are uniformly spectrally equivalent to the operator of the quadrature scheme. Implemented by optimal cost algorithms, the preconditioners are applied to accelerate convergence of the preconditioned conjugate gradient algorithm. Numerical results are presented that demonstrate the efficiency of the preconditioners. c © John Wiley & Sons, Inc.
منابع مشابه
Convergence Analysis of a Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem
A quadrature finite element Galerkin scheme for a Dirichlet boundary value problem for the biharmonic equation is analyzed for a solution existence, uniqueness, and convergence. Conforming finite element space of Bogner-Fox-Schmit rectangles and an integration rule based on the two-point Gaussian quadrature are used to formulate the discrete problem. An H2-norm error estimate is obtained for th...
متن کاملA Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem on a Rectangular Polygon
A quadrature Galerkin scheme with the Bogner–Fox–Schmit element for a biharmonic problem on a rectangular polygon is analyzed for existence, uniqueness, and convergence of the discrete solution. It is known that a product Gaussian quadrature with at least three-points is required to guarantee optimal order convergence in Sobolev norms. In this article, optimal order error estimates are proved f...
متن کاملA Multilevel Method for Discontinuous Galerkin Approximation of Three-dimensional Elliptic Problems
We construct optimal order multilevel preconditioners for interiorpenalty discontinuous Galerkin (DG) finite element discretizations of 3D elliptic boundary-value problems. A specific assembling process is proposed which allows us to characterize the hierarchical splitting locally. This is also the key for a local analysis of the angle between the resulting subspaces. Applying the corresponding...
متن کاملMultilevel Filtering Preconditioners: Extensions to More General Elliptic Problems
The concept of multilevel filtering (MF) preconditioning applied to second-order selfadjoint elliptic problems is briefly reviewed. It is then shown how to effectively apply this concept to other elliptic problems such as the second-order anisotropic problem, biharmonic equation, equations on locally refined grids and interface operators arising from domain decomposition methods. Numerical resu...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کامل